Numerical Simulation of Low-pressure Explosive Combustion in Compartment Fires

نویسندگان

  • Hu Zhixin
  • Arnaud Trouvé
چکیده

Title of dissertation: NUMERICAL SIMULATION OF LOW-PRESSURE EXPLOSIVE COMBUSTION IN COMPARTMENT FIRES Hu Zhixin Doctor of Philosophy, 2008 Dissertation directed by: Professor Arnaud Trouvé Department of Mechanical Engineering A filtered progress variable approach is adopted for large eddy simulations (LES) of turbulent deflagrations. The deflagration model is coupled with a nonpremixed combustion model, either an equilibrium-chemistry, mixture-fraction based model, or an eddy dissipation model. The coupling interface uses a LES-resolved flame index formulation and provides partially-premixed combustion (PPC) modeling capability. The PPC sub-model is implemented into the Fire Dynamic Simulator (FDS) developed by the National Institute of Standards and Technology, which is then applied to the study of explosive combustion in confined fuel vapor clouds. Current limitations of the PPC model are identified first in two separate series of simulations: 1) a series of simulation corresponding to laminar flame propagation across homogeneous mixtures in open or closed tunnel-like configurations; and 2) a grid refinement study corresponding to laminar flame propagation across a vertically-stratified layer. An experimental database previously developed by FM Global Research, featuring controlled ignition followed by explosive combustion in an enclosure filled with vertically-stratified mixtures of propane in air, is used as a test configuration for model validation. Sealed and vented configurations are both considered, with and without obstacles in the chamber. These pressurized combustion cases present a particular challenge to the bulk pressure algorithm in FDS, which has robustness, accuracy and stability issues, in particular in vented configurations. Two modified bulk pressure models are proposed and evaluated by comparison between measured and simulated pressure data in the Factory Mutual Global (FMG) test configuration. The first model is based on a modified bulk pressure algorithm and uses a simplified expression for pressure valid in a vented compartment under quasi-steady conditions. The second model is based on solving an ordinary differential equation for bulk pressure (including a relaxation term proposed to stabilize possible Helmholtz oscillations) and modified vent flow velocity boundary conditions that are made bulk-pressure-sensitive. Comparisons with experiments are encouraging and demonstrate the potential of the new modeling capability for simulations of low pressure explosions in stratified fuel vapor clouds. NUMERICAL SIMULATION OF LOW-PRESSURE EXPLOSIVE COMBUSTION IN COMPARTMENT FIRES

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate Simulation of Low-Pressure Port Fuel and Water Spray in Internal Combustion Engines; Numerical and Experimental Study

One of the solutions to reduce pollutants and increase engine power is to use water spray in internal combustion engines. In this type of engine, fuel and water sprays play an important role in engine performance. In this regard, the purpose of this study is to accurately simulate fuel and water sprays and provide optimal coefficients to achieve the best simulation results. For this purpose, th...

متن کامل

Numerical Simulation of Combustion with Porous Medium in I.C. Engine

Porous media has interesting features in compared with free flame combustion due to the extended of the lean flammability limits and lower emissions. Advanced new generation of internal combustion (IC) engines are expected to have far better emissions levels both gaseous and particulate matter, at the same time having far lower fuel consumption on a wide range of operating condition. These c...

متن کامل

Numerical and experimental investigation of common rail fuel injection system and evaluating influence of fuel pressure on injection characteristics and pressure fluctuations

The combustion processes, engine performance, fuel consumption, exhaust-gas composition, and combustion noise in the diesel engine are closely linked to appropriate mixture of air-fuel in combustion chamber. The fuel-injection parameters such as injection start point, discharge rate curve, injection time and injection pressure are defined by the quality of the mixture formation. The numerical m...

متن کامل

Kallada Janardhan, Rahul; Hostikka, Simo Experiments and Numerical Simulations of Pressure Effects in Apartment Fires

The fire induced pressure and its influence on ventilation flows within a compartment have not been studied in detail previously. In this research work, we have investigated the development of gas pressure and the resulting flows in compartment fires first experimentally, by burning a series of heptane pool and polyurethane mattress fires inside a real, 58.6 m by 2.57 m high, apartment and then...

متن کامل

Numerical Study of Reactivity Controlled Compression Ignition (RCCI) Combustion in a Heavy-Duty Diesel Engine Using 3D-CFD Coupled with Chemical Kinetics

In this paper, a numerical study is performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode in a heavy-duty, single-cylinder diesel engine with gasoline and diesel fuels. In RCCI strategy in-cylinder fuel blending is used to develop fuel reactivity gradients in the combustion chamber that result in a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008